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Abstract
The increased availability of modern embedded many-core architectures supporting floating-
point operations in hardware makes them interesting targets in traditional high performance
computing areas as well. In this paper, the Lattice Boltzmann Method (LBM) from the domain
of Computational Fluid Dynamics (CFD) is evaluated on Adapteva’s Epiphany many-core
architecture.

Although the LBM implementation shows very good scalability and high floating-point
efficiency in the lattice computations, current Epiphany hardware does not provide adequate
amounts of either local memory or external memory bandwidth to provide a good foundation
for simulation of the large problems commonly encountered in real CFD applications.

Keywords: Many-core, Epiphany, Computational Fluid Dynamics, Lattice Boltzmann

1 Introduction

In many scientific problems, from designing a boat engine to predicting tomorrow’s weather,
there is a need to compute the dynamics of liquids and gases. These complex simulations,
known as computational fluid dynamics (CFD), amount to huge amounts of computing time
if good accuracy needs to be achieved. There are examples where the simulation of a few
turns of a propeller can take thousands of CPU hours on powerful workstations. In order
to significantly reduce the simulation time for CFD, utilizing parallel processing will be of
paramount importance.

A relatively recent method in CFD is the Lattice Boltzmann Method (LBM), which is well
suited for parallelization, due to its inherently local structure [8].

Adapteva’s Epiphany platform [5] is a modern, low-power many-core architecture supporting
floating-point operations in hardware. While the current generation of chips contain 16 or 64
cores, the architecture is designed to scale up to thousands of cores on a single chip. Its hardware
support for floating-point calculations makes it a possible choice for many scientific settings,
and recent performance studies are promising (cf. [9]).
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In this paper we will evaluate the potential of using the Epiphany architecture for CFD
simulations using the LBM. The lid cavity test case [1] will be used as a test case and the LBM
has been implemented [6] and run to the Epiphany E16G3 chip, as found on the Parallella
board [5].

The organization of this paper is that we first will describe the LBM and the Epiphany
Architecture. Then follows a description of the implementation and the benchmark we have
used to evaluate the suitability of the architecture for LBM. In section 6 we then describe our
evaluation and results. After this we conclude the paper.

2 Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) has become an alternative to traditional algorithms for
fluid flow simulations, and is able to simulate a wide range of behaviours in both single and
multiphase fluids [8]. Its particle-based nature makes it easily parallelizable and stems from the
Boltzmann equation (
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in which the right-side terms denote the effects caused by collision, streaming or external
forces on the particle density function f = f(�x,�v, t). While the collision and external terms
account for internal (particle-particle) and external (particle-environment) forces, respectively,
the streaming term accounts for the diffusion of particles.

The BGK (Bhatnagar-Gross-Krook) operator treats collisions as relaxations towards a local
equilibrium feq with a single relaxation time τ , which depends on the viscosity of the simulated
fluid. After discretization in both time and space, and neglecting external forces, the fluid node
update function

fi(�x+ �eiδt, t+ δt) = fi(�x, t)− 1

τ
[fi(�x, t)− feq

i (ρ, �u)] , i = 0..n, (2)

in which fi describes the fraction of particles at time t found at position �x moving with the
microscopic velocity �ei, can be formulated. The variables ρ and �u denote the local macroscopic
density of the fluid and its velocity, respectively.

Different lattice models can be employed, which follow the schemeDmQn, withm describing
the number of dimensions, and n the number of discrete velocities ei. For this work, the common
D2Q9 and D3Q19 models have been chosen.

Once per iteration, all fluid nodes are updated in a two-step process:

• Collision, i.e. calculating the local macroscopic flow
quantities ρ and �u, and then executing the relaxation, and

• Streaming, or propagating the new values to the
neighboring cells according to the direction of ei.

While the first step is computationally intensive, it only involves the local fluid node. The
second step is just a data transfer between a fluid node and all of its logical n neighbors.
Boundary conditions may be treated as a modified collision and/or streaming step.
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3 Adapteva Epiphany

The Epiphany architecture [5] is a scalable, two dimensional mesh of computing nodes (Fig. 1).
It operates in a shared, flat 32-bit address space, in which each node uses a continuous 1MiB
large block. Nodes are addressed by their row and column numbers (6 bits each), although the
special node address (0,0) always refers to the local node.

eMesh

Router

DMA

Timers

Local MemoryeNode

NIeCore

Figure 1: Epiphany mesh fabric

The mesh itself is made of three meshes with different purposes, called rMesh, cMesh and
xMesh. The former is used exclusively for read requests, while the latter two carry write
transactions destined for on-chip and off-chip nodes, respectively. To the application, these are
indistinguishable, apart from bandwidth and latency differences. Routing follows static rules
and happens along the axes, first by row, then by column address. For multicast traffic, a
different routing scheme can be selected.

Writes are heavily favoured over reads, since reading a foreign address involves sending a
read request and waiting for the answer to arrive. On the other hand, writes are of a fire-and-
forget type, allowing the node to continue processing while the data will eventually reach its
destination. For performance reasons, the memory-order model is weakened, so that the order of
memory transactions is non-deterministic for write-after-read or write-after-write transactions
when foreign nodes are involved. Transactions inside the local node always follow a strong-order
memory model, however.

Each node (called eNode) contains an eCore processor, 32KiB of high-speed local memory,
a two-channel DMA controller, and a mesh controller (Fig. 2a), and every eCore consists of an
in-order, dual-issue 32-bit RISC CPU including both an IEEE754 compatible floating-point unit
(FPU), an integer arithmetic-logic unit (IALU), a 64-word register file and an interrupt con-
troller (Fig. 2b). Two event timers allow measuring execution times with clock-cycle granularity
as well as different kinds of pipeline stalls.

The 32KiB of local memory in each node are divided into four independent banks of 8KiB
each, of which the first bank contains the interrupt vector table and is therefore suitable for
the code. In this study we will use the remaining three banks (24KiB total) for data.
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Figure 2: Epiphany components

This work used the open Parallella platform, which was started in 2012 as a Kickstarter
project and is commercially available from Adapteva. The Parallella board itself is a fully
open-source credit-card sized computer containing a Xilinx Zynq 7010 or 7020, an Epiphany
E16G3 and 1 GiB of RAM. The Xilinx Zynq is a System-on-Chip with two ARM Cortex-A9
processor cores and some reconfigurable logic, and is fully supported by Linux. The board also
contains 1 GBit-Ethernet, USB and HDMI interfaces, can boot from a MicroSD card and is able
to run the Epiphany SDK. The E16G3 chip is a 16-core implementation of the Epiphany-III
architecture running at 600MHz on the Parallella.

Adapteva’s e-Link interface is implemented using FPGA logic and is used to exchange
data between the ARM cores and the Epiphany. By default, a 32MiB block of memory is
shared between both systems. On the Parallella board, the 4x4 grid of processor nodes uses the
coordinates between (32,8) and (35,11) inclusive. Shared memory starts at address 0x8e000000,
which translates to mesh coordinates (35,32) and (36,0). Accesses to shared memory are routed
to these coordinates and leave the chip on the EAST e-Link interface, which is connected to
the Zynq’s FPGA logic and thus, indirectly, to the host memory. However, using this interface
is significantly slower than the internal on-chip communication pathes.

4 Implementation

Central to the Lattice Boltzmann Method is the lattice, which contains the simulation state of
the fluid in the domain. Only a single copy of the lattice is stored in local memory. Once per
time-step, the whole lattice is updated in-place by utilizing the ”swap trick” [4]. For some or
all iterations, the whole lattice is then copied to shared memory.

The only way to get data in or out of the Epiphany chip on the Parallella board is via the
shared memory. Since accessing it is at least one order of magnitude slower than accessing
local memory, we have decided to map the lattice directly to the local memory of the cores.
However, as we only have 24KiB of data memory available in each core, this major decision
severely restricts the lattice sizes we will be able to simulate.
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The lattice itself will be divided into blocks, where each block is stored in and processed by a
single processing node only. In a two-dimensional simulation, blocks are rectangular, and map-
ping them to the two-dimensional Epiphany mesh is straight-forward. A similar approach was
chosen for three-dimensional simulations, where the then cuboid-shaped blocks are distributed
in two dimensions only (Fig. 3).
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Figure 3: Mapping of blocks in 2D (left) and 3D (right),
outer boundaries drawn bold

Each block contains multiple lattice nodes, which are classified as bulk nodes, if all of their
neighbors are part of the same block. Otherwise, nodes are either part of the inner boundary,
if their neighbors are still part of the simulation domain, or else, outer boundary. Even if
the latter requires special treatment, it is only the nodes of the inner boundary that require
communication between different mesh nodes. Fortunately, this communication will be next-
neighbor only.

The outer boundaries describe the behaviour of the fluid on the simulation domain bound-
ary. By specifying the behaviour of these fluid nodes (e.g. imprinting a velocity), solving a
linear equation system allows simulating physically reasonable boundaries. This work uses the
boundary conditions described by Zou/He [11].

Due to the limited amount of local memory, the achieveable lattice sizes are very small (see
Table 1). In 3D, two block sizes were studied: While 7x6x7 blocks are almost cube-shaped, the
3x35x3 extend maximally in the non-distributed dimension. Still, due to the small block sizes,
there is little advantage in using more complicated mapping schemes. For the 2D benchmarks,
block sizes of 24x24 (instead of the maximum 26x26) have been used.

lattice node size max. nodes maximum lattice size
model (bytes) per block block size (16 cores)
D2Q9 36 682 26x26 104x104
D3Q19 76 323 7x6x7 28x6x28
D3Q19 76 323 3x35x3 12x35x12

Table 1: Achieveable lattice sizes (E16G3)

While it is possible to achieve larger lattices by storing it in shared memory and update it
in a streaming fashion, the limited external memory bandwidth makes this approach infeasible.
An alternative solution would be to combine multiple Epiphany chips to increase the number
of cores in a single system. Doing so would still require using slower off-chip communication,
but keep the advantage of using the fast local memory.

On the Use of a Many-core Processor for CFD Simulations Raase, Nordström

1407



The collision-streaming approach is a straight implementation of the two-step process de-
scribed earlier. Each core needs to access all nodes in its block twice (once per step), since the
computation and communication steps of the algorithm are separated.

It is possible to combine both steps, as long as all nodes are processed in a specific order
(cf. [4]). However, due to the parallel processing of different sub-lattices, this order can only be
guaranteed inside each block, requiring the inner boundaries to be handled separately.

The boundary-bulk approach handles the boundary nodes similarly to the collision-streaming
approach, but uses additional code to combine both steps for the bulk of each block. Conse-
quently, this optimization benefits from larger block sizes, trading iteration throughput for
lattice node throughput.

All active cores in the Epiphany mesh always run in lockstep, being synchronized with
barriers when needed. In local memory, only a single lattice version can be stored, requiring
the cores to wait while the lattice is copied to shared memory in order to get a consistent
iteration snapshot. Floating-point calculations are done with single-precision.

To provide intermediate simulation states to the host, the lattice is copied to shared memory
after some (or all) iterations.

5 Benchmark

To validate the implementation, the lid cavity test case (see e.g. [1]) has been simulated in two
and three dimensions. The chosen boundary conditions force fluid nodes attached to a wall to
always move at the same speed as the wall itself (no-slip walls), which is required for the lid
cavity test case.

The simulation domain consists of a box with zero-speed walls on all sides except one (top)
and starts with a fluid of constant density. The top wall moves at a constant velocity, dragging
the fluid along. Since the fluid cannot leave the box through the right-side wall, it starts to
move downwards, forming a circular stream over time, finally reaching a steady state. Fig. 4
shows the normalized absolute velocity of a two-dimensional 104x104 simulation after 150 (left)
and 1000 (right) time steps. Higher velocities are shown with higher intensity.

Figure 4: Velocity field of an example 2D lid cavity simulation,
iterations 150 (left) and 1000 (right)

For real applications, much larger lattice sizes are required. While our implementation
achieves three-dimensional lattice sizes of 12x35x12, studies on porous media have shown to
require at least 128x128x1024 lattices [3]. One of the SPEC2006 floating-point benchmarks
(470.lbm) uses the Lattice Boltzmann Method on a 150x150x150 lattice (cf. [7]).
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6 Evaluation and results

In the 2D case, the boundary-bulk approach is more than twice as fast as the collision-streaming
approach, reaching 45MLU/s (Millions of Lattice-node Updates per second) at a 700MHz clock
rate.

On the other hand, the 3D case does not benefit from it at all, due to the much smaller
block sizes (Fig. 5) possible. Additionally, it was not possible to compile the 3D code at the
highest optimization level without breaking the 8KiB code size limit. Together with the more
complicated boundary conditions and more involved calculations, the 3D performance reaches
at most 5.4MLU/s with a block size of 7x6x7 using the boundary-bulk approach.
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Figure 5: Node update rates (16 cores)

Current CPU generations have been shown to perform more than 110 MLU/s on larger,
three-dimensional lattices using double-precision arithmetic. Also, using single-precision arith-
metic, GPUs have been able to achieve up to 650 MLU/s. Since these system differ widely,
simply comparing the throughput does not lead far. As table 2 shows, the Epiphany architec-
ture is very much competitive in terms of power efficiency, even though the Lattice Boltzmann
Method by itself is a bad fit to the architecture due to its large working set.

system type clock freq number power MLU/s MLU/s MLU/s
in MHz of FPUs in W total per FPU per W

Epiphany-III 700 16 2 5.4 0.34 2.7
Tesla C2070 [2] 1150 448 238 650 1.45 2.73
Xeon E5-2660 [10] 2200 10 95 110 11.0 1.16

Table 2: Throughput comparison of different systems

The scalability was analyzed in 2D both for a constant 24x24 lattice size (using block sizes
of 24x24, 12x12, 8x8, and 6x6 as the number of cores increased), or for a constant 24x24 block
size (leading to lattice sizes of 24x24, 48x48, 72x72, and 96x96 respectively).

The collision-streaming approach scales almost linearly with the number of cores used
(Fig. 6a). Since smaller block sizes contain a larger percentage of boundary nodes, the in-
creased communication requirements lead to a slightly decreased speedup in that case. In
contrast, the boundary-bulk approach suffers much more from smaller block sizes (Fig. 6b),
losing its speed advantage as blocks start to only consist of boundary nodes.

On the Use of a Many-core Processor for CFD Simulations Raase, Nordström

1409



 2
 4
 6
 8

 10
 12
 14
 16

1 4 9 16

re
la

tiv
e 

sp
ee

du
p

number of cores

constant block size
constant lattice size

(a) collision-streaming

 2
 4
 6
 8

 10
 12
 14
 16

1 4 9 16

re
la

tiv
e 

sp
ee

du
p

number of cores

constant block size
constant lattice size

(b) boundary-bulk

Figure 6: Relative speedup, 2D case

The two-dimensional collision step by itself requires in average 285 clock cycles per node,
in which 135 IALU- and 73 FPU-instructions are executed [6]. Thus, only 26% of collision
clock cycles are spent executing FPU-instructions (73% for both IALU- and FPU-instructions).
Assuming perfect scheduling while simultaneously hiding the streaming step in dual-issue cycles,
the node update rate could at most be quadrupled.

Since we put the code to the first memory bank only, code size is limited to slightly below
8KiB. Compiling the three-dimensional boundary-bulk code at the highest optimization level
exceeds that limit. For this reason, the 3D code was compiled at the -O2 level only.

For most CFD applications, at least some intermediate results of a simulation are important,
requiring the lattice to be sent to the host application. This is done through shared memory, and
unfortunately, accesses to it are very slow. For a two-dimensional 24x24 lattice (20,736 bytes),
the time to copy the lattice accounts for more than 90% of the iteration clock cycles. In average,
it takes about 8 clock cycles per byte to write the lattice to shared memory, which translates
to about 75MiB/s, or one eighth of the theoretical maximum throughput of 600MiB/s. It has,
however, been shown that at least 150MiB/s are achieveable on the Parallella platform (cf. [9]).
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Copying the lattice to shared memory happens concurrently on all cores, and blocks until
all cores have finished to provide a consistent iteration result. As shown in Fig. 8, network
congestion leads to a non-uniform distribution of the shared memory bandwidth. While the
total bandwidth does not change, most rows suffer from starvation (cf. [9]). In our case, the
bottom row, which is connected with the shortest distance to shared memory, is least affected.
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Figure 8: Per-core host copy time

In all tests, the size of the lattice is hard limited by the assigned 24KiB of local per-core
memory, which is too small for almost all CFD applications. Since it is impossible to store larger
lattices inside the Epiphany chip, extending the lattice is only possible through the external
interface, or by extending the mesh fabric with additional Epiphany chips.

Although a multi-chip solution has yet to be studied, adding additional chips requires some
of the inner boundary data to use the slower off-chip communication pathes. Since barriers are
used to synchronize all cores, the resulting slowdown would be felt on all cores. On the other
hand, due to the next-neighbor communications, the slowdown should also be limited such that
adding chips to a multi-chip solution should not slow the system down any further.

However, extending the lattice with additional chips does not increase the external memory
bandwidth, increasing the overhead for copying the lattice to the host.

7 Conclusion

In this paper we have studied to feasibility to run Computational Fluid Dynamics (CFD)
simulations on Adapteva’s many-core architecture Epiphany. The easily parallelizable Lat-
tice Boltzmann Method (LBM) has been implemented and evaluated using a basic lid cavity
benchmark.

Due to the low bandwidth to external memory the only reasonable mapping of LBM lattices
is to the local memory in the cores. However due to the small local memory (32KiB) we can
not fit more than a very small number of lattice nodes per core (for the 2D case we managed
to have 24x24 lattice nodes per core). As we have only used one chip, with 16 cores, the overall
area or volume one currently can simulate is very restricted.

Still, the potential of the Epiphany core for doing LBM calculations can be seen in the
respectable 45MLU/s (Millions of Lattice-node Updates per second) while consuming less than
2W for the 2D case. Unfortunately, for the 3D case we find a significant reduction in perfor-
mance due to the contained local memory. Nevertheless, as the LBM algorithm only exhibits
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nearest-neighbor communication we see an almost linear scaling in performance with the num-
ber of cores.

However, as soon as we need to simulate a problem than is larger than what can be fit into
one chip (which is true for any real world simulation), the performance will be reduced when
using a multi-chip solution. Using the external memory to store the lattice will reduce the
performance significantly.

That is, in order for the Epiphany architecture to efficiently run LBM on real world sized
problems one needs to both increase the local memory size as well as introduce a more efficient
external memory access scheme.
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